Муниципальное общеобразовательное учреждение «Ботовская средняя общеобразовательная школа»

«Рассмотрено» Руководитель ШМО

Ду | Дутова Л. Г. Протокол № ___ от « 1 » __ 09 __ 202 /_ г. «Согласовано»

Заместитель директора

no YBP HONN. M. Tucar

«У» ОЭ 202 1 г.

«Утверждено» «ХАЛ

Директор школы

Приказ№ <u>16</u> « <u>01</u> » <u>09</u> 2001 г.

Рабочая программа по предмету «Химия», ФГОС ООО, базовый уровень для учащихся 8 класса 2021-2022 учебный год

Количество часов всего: 70ч., в неделю 2 ч.

Плановых контрольных работ_____ч.

Практических работ_____ч.

Учебно-методический комплекс:

Химия: Базовый уровень Химия 8класс: учебник/О.С.Габриелян-Дрофа,2018

Составитель: Ланцова А.Н., учитель химии МОУ «Ботовская СОШ»

2021-2022 учебный год

ПОЯСНИТЕЛЬНАЯ ЗАПИСКА

Рабочая программа учебного курса по химии для 8 класса разработана на основе ФГОС второго поколения, примерной программы основного общего образования по химии (базовый уровень) и авторской программы О.С. Габриеляна (Габриелян О.С. программа курса химии для 8-11 классов общеобразовательных учреждений М: Дрофа,2018г).

Программа рассчитана на 70 часов (2 часа в неделю). Данная программа конкретизирует содержание стандарта, даёт распределение учебных часов по разделам курса, последовательность изучения тем и разделов с учётом межпредметных и предметных связей, логики учебного процесса, возрастных особенностей учащихся.

Настоящая рабочая программа составлена на базе следующих нормативных документов

- Федерального закона РФ № 273 «Закон об образовании».
- Федерального государственного образовательного стандарта от 29 декабря 2014 г.
- Концепции духовно-нравственного развития и воспитания личности гражданина России.
 - Примерной рабочей программы по химии от 8 апреля 2015 г.
- Основной образовательной программы основного общего образования МОУ «Ботовская СОШ»
 - Учебного плана МОУ «Ботовская СОШ» на 2021-2022 учебный год

как одна из основополагающих областей естествознания, является неотъемлемой частью образования школьников. Каждый человек живет в мире веществ, поэтому он должен иметь основы фундаментальных знаний по химии (химическая символика, химические понятия, факты, основные законы и теории), позволяющие выработать представления о составе веществ, их строении, превращениях, практическом использовании, а также об опасности, которую они могут представлять. Изучая химию, учащиеся узнают о материальном единстве всех веществ окружающего обусловленности свойств веществ их составом и строением, познаваемости и предсказуемости химических явлений. Изучение свойств веществ и их превращений способствует развитию логического мышления, а практическая работа с веществами (лабораторные опыты) – трудолюбию, аккуратности и собранности. На примере химии учащиеся получают представления о методах познания, характерных для естественных наук (экспериментальном и теоретическом). Рабочая программа построена на концентрического подхода. Это достигается путем вычленения дидактической единицы химического элемента - и дальнейшем усложнении и расширении ее: здесь таковыми выступают формы существования (свободные атомы, простые и сложные вещества). В программе учитывается реализация межпредметных связей с курсом физики (7 класс) и биологии (6-7 классы), где дается знакомство с строением атома, химической организацией клетки и процессами обмена веществ.

Цели изучения химии в 8 классе:

- освоение важнейших знаний об основных понятиях и законах химии, химической символике:
- овладение умениями наблюдать химические явления, проводить химический эксперимент, производить расчеты на основе химических формул веществ и уравнений химических реакций;
- развитие познавательных интересов и интеллектуальных способностей в процессе проведения химического эксперимента, самостоятельного приобретения знаний в соответствии с возникающими жизненными потребностями;
- воспитание отношения к химии как к одному из фундаментальных компонентов естествознания и элементу общечеловеческой культуры;
- применение полученных знаний и умений для безопасного использования веществ и материалов в быту, сельском хозяйстве и на производстве, решения практических задач в

повседневной жизни, предупреждения явлений, наносящих вред здоровью человека и окружающей среде.

• ПЛАНИРУЕМЫЕ РЕЗУЛЬТАТЫ ИЗУЧЕНИЯ ПРЕДМЕТА

Личностными результатами изучения предмета «Химия» в 8 классе являются следующие умения:

- осознавать единство и целостность окружающего мира, возможности его познаваемости и объяснимости на основе достижений науки;
- постепенно выстраивать собственное целостное мировоззрение: осознавать потребность и готовность к самообразованию, в том числе и в рамках самостоятельной деятельности вне школы;
- оценивать жизненные ситуации с точки зрения безопасного образа жизни и сохранения здоровья;
- оценивать экологический риск взаимоотношений человека и природы.
- формировать экологическое мышление: умение оценивать свою деятельность и поступки других людей с точки зрения сохранения окружающей среды гаранта жизни и благополучия людей на Земле.

Метапредметными результатами изучения курса «Химия» является формирование универсальных учебных действий (УУД).

Регулятивные УУД:

- самостоятельно обнаруживать и формулировать учебную проблему, определять цель учебной деятельности;
- выдвигать версии решения проблемы, осознавать конечный результат, выбирать из предложенных и искать самостоятельно средства достижения цели;
- составлять (индивидуально или в группе) план решения проблемы;
- работая по плану, сверять свои действия с целью и, при необходимости, исправлять ошибки самостоятельно;
- в диалоге с учителем совершенствовать самостоятельно выработанные критерии оценки.

Познавательные УУД:

- анализировать, сравнивать, классифицировать и обобщать факты и явления. Выявлять причины и следствия простых явлений.
- осуществлять сравнение, классификацию, самостоятельно выбирая основания и критерии для указанных логических операций;
- строить логическое рассуждение, включающее установление причинно-следственных связей.
- создавать схематические модели с выделением существенных характеристик объекта.
- составлять тезисы, различные виды планов (простых, сложных и т.п.).
- преобразовывать информацию из одного вида в другой (таблицу в текст и пр.).
- уметь определять возможные источники необходимых сведений, производить поиск информации, анализировать и оценивать её достоверность.

Коммуникативные УУД:

Самостоятельно организовывать учебное взаимодействие в группе (определять общие цели, распределять роли, договариваться друг с другом и т.д.).

Предметными результатами изучения предмета являются следующие умения:

- осознание роли веществ:
 - определять роль различных веществ в природе и технике;
 - объяснять роль веществ в их круговороте.
- рассмотрение химических процессов:

- приводить примеры химических процессов в природе;
- находить черты, свидетельствующие об общих признаках химических процессов и их различиях.
- использование химических знаний в быту:
 - объяснять значение веществ в жизни и хозяйстве человека.
- объяснять мир с точки зрения химии:
 - перечислять отличительные свойства химических веществ;
 - различать основные химические процессы;
 - определять основные классы неорганических веществ;
 - понимать смысл химических терминов.
- овладение основами методов познания, характерных для естественных наук:
 - характеризовать методы химической науки (наблюдение, сравнение, эксперимент, измерение) и их роль в познании природы;
 - проводить химические опыты и эксперименты и объяснять их результаты.
- умение оценивать поведение человека с точки зрения химической безопасности по отношению к человеку и природе:
 - использовать знания химии при соблюдении правил использования бытовых химических препаратов;
 - различать опасные и безопасные вещества.

СОДЕРЖАНИЕ ИЗУЧАЕМОГО КУРСА

Введение

Предмет химии. Методы познания в химии: наблюдение, эксперимент, моделирование. Источники химической информации, ее получение, анализ и представление результатов.

Понятие о химическом элементе и формах его существования: свободных атомах, простых и сложных веществах.

Превращения веществ. Отличие химических реакций от физических явлений. Роль химии в жизни человека. Хемофилия и хемофобия.

Краткие сведения из истории возникновения и развития химии. Роль отечественных ученых в становлении химической науки – работы М. В. Ломоносова, А. М. Бутлерова, Д. И. Менделеева.

Химическая символика. Знаки химических элементов и происхождение их названий. Химические формулы. Индексы и коэффициенты. Относительные атомная и молекулярная массы. Проведение расчетов массовой доли химического элемента в веществе на основе его формулы.

Периодическая система химических элементов Д. И. Менделеева, ее структура: малые и большие периоды, группы и подгруппы. Периодическая система как справочное пособие для получения сведений о химических элементах.

Демонстрации. Модели (шаростержневые и Стюарта – Бриглеба) различных простых и сложных веществ. Коллекция стеклянной химической посуды. Коллекция материалов и изделий из них на основе алюминия. Взаимодействие мрамора с кислотой и помутнение известковой воды.

Лабораторные опыты. 1. Сравнение свойств твердых кристаллических веществ и растворов. 2. Сравнение скорости испарения воды, одеколона и этилового спирта с фильтровальной бумаги.

Тема 1. Атомы химических элементов

Атомы как форма существования химических элементов. Основные сведения о строении атомов. Доказательства сложности строения атомов. Опыты Резерфорда. Планетарная модель строения атома.

Состав атомных ядер: протоны, нейтроны. Относительная атомная масса. Взаимосвязь понятий «протон», «нейтрон», «относительная атомная масса».

Изменение числа протонов в ядре атома – образование новых химических элементов.

Изменение числа нейтронов в ядре атома — образование изотопов. Современное определение понятия «химический элемент». Изотопы как разновидности атомов одного химического элемента.

Электроны. Строение электронных уровней атомов химических элементов малых периодов. Понятие о завершенном электронном уровне.

Периодическая система химических элементов Д. И. Менделеева и строение атомов – физический смысл порядкового номера элемента, номера группы, номера периода.

Изменение числа электронов на внешнем электронном уровне атома химического элемента — образование положительных и отрицательных ионов. Ионы, образованные атомами металлов и неметаллов. Причины изменения металлических и неметаллических свойств в периодах и группах. Образование бинарных соединений. Понятие об ионной связи. Схемы образования ионной связи. Взаимодействие атомов элементов-неметаллов между собой — образование двухатомных молекул простых веществ.

Ковалентная неполярная химическая связь. Электронные и структурные формулы.

Взаимодействие атомов неметаллов между собой — образование бинарных соединений неметаллов. Электроотрицательность. Ковалентная полярная связь. Понятие о валентности как свойстве атомов образовывать ковалентные химические связи. Составление формул бинарных соединений по валентности. Нахождение валентности по формуле бинарного соединения.

Взаимодействие атомов металлов между собой – образование металлических кристаллов. Понятие о металлической связи.

Демонстрации. Модели атомов химических элементов. Периодическая система химических элементов Д. И. Менделеева (различные формы).

Лабораторные опыты. 3. Моделирование принципа действия сканирующего микроскопа. 4. Изготовление моделей молекул бинарных соединений.

Тема 2. Простые вещества

Положение металлов и неметаллов в Периодической системе химических элементов Д. И. Менделеева. Важнейшие простые вещества — металлы (железо, алюминий, кальций, магний, натрий, калий). Общие физические свойства металлов.

Важнейшие простые вещества-неметаллы, образованные атомами кислорода, водорода, азота, серы, фосфора, углерода. Молекулы простых веществ-неметаллов — водорода, кислорода, азота, галогенов. Относительная молекулярная масса.

Способность атомов химических элементов к образованию нескольких простых веществ – аллотропия. Аллотропные модификации кислорода, фосфора, олова. Металлические и неметаллические свойства простых веществ. Относительность этого понятия.

Число Авогадро. Количество вещества. Моль. Молярная масса. Молярный объем газообразных веществ. Кратные единицы измерения количества вещества — миллимоль и киломоль, миллимолярная и киломолярная массы вещества, миллимолярный и киломолярный объемы газообразных веществ.

Расчеты с использованием понятий «количество вещества», «молярная масса», «молярный объем газов», «число Авогадро».

Демонстрации. Получение озона. Образцы белого и серого олова, белого и красного фосфора. Некоторые металлы и неметаллы с количеством вещества 1 моль. Молярный объем газообразных веществ.

Лабораторные опыты. 5. Ознакомление с коллекцией металлов. 6. Ознакомление с коллекцией неметаллов.

Тема 3. Соединения химических элементов

Степень окисления. Сравнение степени окисления и валентности. Определение степени окисления элементов в бинарных соединениях. Составление формул бинарных соединений, общий способ их названий.

Бинарные соединения металлов и неметаллов: оксиды, хлориды, сульфиды и пр. Составление их формул.

Бинарные соединения неметаллов: оксиды, летучие водородные соединения, их состав и названия. Представители оксидов: вода, углекислый газ, негашеная известь. Представители летучих водородных соединений: хлороводород и аммиак.

Основания, их состав и названия. Растворимость оснований в воде. Представители щелочей: гидроксиды натрия, калия и кальция. Понятие об индикаторах и качественных реакциях.

Кислоты, их состав и названия. Классификация кислот. Представители кислот: серная, соляная, азотная. Понятие о шкале кислотности (шкала pH). Изменение окраски индикаторов.

Соли как производные кислот и оснований, их состав и названия. Растворимость солей в воде. Представители солей: хлорид натрия, карбонат и фосфат кальция.

Аморфные и кристаллические вещества.

Межмолекулярные взаимодействия. Типы кристаллических решеток. Зависимость свойств веществ от типов кристаллических решеток.

Чистые вещества и смеси. Примеры жидких, твердых и газообразных смесей. Свойства чистых веществ и смесей. Их состав.

Массовая и объемная доли компонента смеси. Расчеты, связанные с использованием понятия «доля».

Демонстрации. Образцы оксидов, кислот, оснований и солей. Модели кристаллических решеток хлорида натрия, алмаза, оксида углерода (IV). Кислотно-щелочные индикаторы, изменение их окраски в различных средах. Универсальный индикатор и изменение его окраски в различных средах. Шкала рН.

Лабораторные опыты. 7. Ознакомление с коллекцией оксидов. 8. Ознакомление со свойствами аммиака. 9. Качественная реакция на углекислый газ. 10. Определение рН растворов кислоты, щелочи и воды. 11. Определение рН лимонного и яблочного соков на срезе плодов. 12. Ознакомление с коллекцией солей. 13. Ознакомление с коллекцией веществ с разным типом кристаллической решетки. Изготовление моделей кристаллических решеток. 14. Ознакомление с образцом горной породы.

Тема 4. Изменения, происходящие с веществами

Понятие явлений, связанных с изменениями, происходящими с веществом.

Явления, связанные с изменением кристаллического строения вещества при постоянном его составе, физические явления. Физические явления в химии: дистилляция, кристаллизация, выпаривание и возгонка веществ, фильтрование и центрифугирование.

Явления, связанные с изменением состава вещества, химические реакции. Признаки и условия протекания химических реакций. Выделение теплоты и света — реакции горения. Понятие об экзо- и эндотермических реакциях.

Закон сохранения массы веществ. Химические уравнения. Значение индексов и коэффициентов. Составление уравнений химических реакций.

Расчеты по химическим уравнениям. Решение задач на нахождение количества, массы или объема продукта реакции по количеству, массе или объему исходного вещества. Расчеты с использованием понятия «доля», когда исходное вещество дано в виде раствора с заданной массовой долей растворенного вещества или содержит определенную долю примесей.

Реакции разложения. Представление о скорости химических реакций. Катализаторы. Ферменты. Реакции соединения. Каталитические и некаталитические реакции, обратимые и необратимые реакции. Реакции замещения. Ряд активности металлов, его использование для прогнозирования возможности протекания реакций между металлами и кислотами, реакций

вытеснения одних металлов из растворов их солей другими металлами. Реакции обмена. Реакции нейтрализации. Условия протекания реакций обмена в растворах до конца.

Типы химических реакций на примере свойств воды. Реакция разложения — электролиз воды. Реакции соединения — взаимодействие воды с оксидами металлов и неметаллов. Условие взаимодействия оксидов металлов и неметаллов с водой. Понятие «гидроксиды». Реакции замещения — взаимодействие воды с металлами. Реакции обмена — гидролиз вешеств.

Демонстрации. Примеры физических явлений: а) плавление парафина; б) возгонка йода или бензойной кислоты; в) растворение окрашенных солей; г) диффузия душистых веществ с горящей лампочки накаливания. Примеры химических явлений: а) горение магния, фосфора; б) взаимодействие соляной кислоты с мрамором или мелом; в) получение гидроксида меди (II); г) растворение полученного гидроксида в кислотах; д) взаимодействие оксида меди (II) с серной кислотой при нагревании; е) разложение перманганата калия; ж) разложение пероксида водорода с помощью диоксида марганца и каталазы картофеля или моркови; з) взаимодействие разбавленных кислот с металлами.

Лабораторные опыты. 15. Прокаливание меди в пламени спиртовки. 16. Замещение меди в растворе хлорида меди (II) железом.

Практикум 1. Простейшие операции с веществом

1. Правила техники безопасности при работе в химическом кабинете. Приемы обращения с лабораторным оборудованием и нагревательными приборами. 2. Наблюдения за изменениями, происходящими с горящей свечой, и их описание (домашний эксперимент). 3. Анализ почвы и воды (домашний эксперимент). 4. Признаки химических реакций. 5. Приготовление раствора сахара и расчет его массовой доли в растворе.

Тема 5. Растворение. Растворы. Свойства растворов электролитов

Растворение как физико-химический процесс. Понятие о гидратах и кристаллогидратах. Растворимость. Кривые растворимости как модель зависимости растворимости твердых веществ от температуры. Насыщенные, ненасыщенные и пересыщенные растворы. Значение растворов для природы и сельского хозяйства.

Понятие об электролитической диссоциации. Электролиты и неэлектролиты. Механизм диссоциации электролитов с различным характером связи. Степень электролитической диссоциации. Сильные и слабые электролиты.

Основные положения теории электролитической диссоциации. Ионные уравнения реакций. Реакции обмена, идущие до конца.

Классификация ионов и их свойства.

Кислоты, их классификация. Диссоциация кислот и их свойства в свете теории электролитической диссоциации. Молекулярные и ионные уравнения реакций. Взаимодействие кислот с металлами. Электрохимический ряд напряжений металлов. Взаимодействие кислот с оксидами металлов. Взаимодействие кислот с основаниями – реакция нейтрализации. Взаимодействие кислот с солями. Использование таблицы растворимости для характеристики химических свойств кислот.

Основания, их классификация. Диссоциация оснований и их свойства в свете теории электролитической диссоциации. Взаимодействие оснований с солями. Использование таблицы растворимости для характеристики химических свойств оснований. Взаимодействие щелочей с оксидами неметаллов.

Соли, их диссоциация и свойства в свете теории электролитической диссоциации. Взаимодействие солей с металлами, особенности этих реакций. Взаимодействие солей с солями. Использование таблицы растворимости для характеристики химических свойств солей.

Обобщение сведений об оксидах, их классификации и свойствах.

Генетические ряды металла и неметалла. Генетическая связь между классами неорганических веществ.

Окислительно-восстановительные реакции.

Определение степеней окисления для элементов, образующих вещества разных классов. Реакции ионного обмена и окислительно-восстановительные реакции. Окислитель и восстановитель, окисление и восстановление.

Составление уравнений окислительно-восстановительных реакций методом электронного баланса

Свойства простых веществ – металлов и неметаллов, кислот и солей в свете окислительно-восстановительных реакций.

Демонстрации. Испытание веществ и их растворов на электропроводность. Зависимость электропроводности уксусной кислоты от концентрации. Движение окрашенных ионов в электрическом поле. Взаимодействие цинка с серой, соляной кислотой, хлоридом меди (II). Горение магния. Взаимодействие хлорной и сероводородной воды.

Лабораторные опыты. 17. Взаимодействие растворов хлорида натрия и нитрата серебра. 18. Получение нерастворимого гидроксида и взаимодействие его с кислотами. 19. Взаимодействие кислот с основаниями. 20. Взаимодействие кислот с оксидами металлов. 21. Взаимодействие кислот с металлами. 22. Взаимодействие кислот с солями. 23. Взаимодействие щелочей с кислотами. 24. Взаимодействие щелочей с оксидами неметаллов. 25. Взаимодействие шелочей с солями. 26. Получение и свойства нерастворимых оснований. 27. Взаимодействие основных оксидов с кислотами. 28. Взаимодействие основных оксидов с водой. 29. Взаимодействие кислотных оксидов с щелочами. 30. Взаимодействие кислотных оксидов с водой. 31. Взаимодействие солей с кислотами. 32. Взаимодействие солей с щелочами. 33. Взаимодействие солей с металлами.

Практикум 2. Свойства растворов электролитов

1. Ионные реакции. 2. Условия течения химических реакций между растворами электролитов до конца. 3. Свойства кислот, оснований, оксидов и солей. 4. Решение экспериментальных задач.

Тематическое планирование по химии, 8 класс, (2 часа в неделю, всего 68 часов) УМК О.С. Габриеляна.

Раздел	Тема	Количество часов	В том числе контр. раб.
I	Введение	1	0
II	Атомы химических элементов	10	1
III	Простые вещества	7	1
IV	Соединения химических элементов	14	1
V	Изменения, происходящие с веществами	11	1
VI	Растворение. Растворы. Свойства растворов электролитов	16	0
VII	Итоговое повторение, демонстрация личных достижений учащихся	4	1

ļ	Резерв	2	
	Итого	70	5

КАЛЕНДАРНО-ТЕМАТИЧЕСКИЙ ПЛАН

№	No	Название раздела/Тема урока	Дата	Примечание		
п/п	урока					
Введение 6часов						
1	1	Химия –				
		наука о веществах, их свойствах и превращениях				
2	2	Превращения веществ. Роль химии в жизни				
		человека				
3	3	Периодическая система химических элементов.				
		Знаки химических элементов				
4	4	Химические формулы. Относительная атомная и				
		молекулярная масса				
5	5	Массовая доля элемента в соединении				
6	6	Практическая работа № 1. Знакомство с				
		лабораторным оборудованием. Правила ТБ				
		Атомы химических элементов 10 ч				
7	1	Основные сведения о строении атомов				
8	2	Изотопы как разновидности атомов химического				
		элемента				
9	3	Электроны. Строение электронных оболочек атомов				
		химических элементов				
10	4	Периодическая система химических элементов и				
		строение атомов				
11	5	Ионная химическая связь				
12	6	Ковалентная неполярная химическая связь				
13	7	Ковалентная полярная химическая связь				
14	8	Металлическая связь				
15	9	Обобщение и систематизация знаний по теме				
		«Атомы химических элементов»				
16	10	Контрольная работа № 1 по теме «Атомы				
		химических элементов»				
Простые вещества 7 ч						
17	1	Простые вещества металлы				
18	2	Простые вещества –				
		неметаллы				
19	3	Количество вещества. Моль. Молярная масса				

20	4	Молярный объем газообразных веществ	
21	5	Решение задач по формуле	
22	6	Обобщение и систематизация знаний по теме	
	O	«Простые вещества»	
23	7	Контрольная работа № 2 по теме «Простые	
	,	вещества»	
		Соединения химических элементов 14час	СОВ
24	1	Степень окисления. Бинарные соединения	
25	2	Оксиды. Летучие водородные соединения	
26	3	Основания	
27	4	Кислоты	
28	5	Соли как производные кислот и оснований	
29	6	Соли как производные кислот и оснований	
30	7	Основные классы неорганических веществ	
31	8	Аморфные и кристаллические вещества	
32	9	Чистые вещества и смеси	
33	10	Разделение смесей. Очистка веществ	
34	11	Практическая работа № 2 «Очистка загрязненной	
		поваренной соли»	
35	12	Массовая и объемная доля компонентов смеси	
36	13	Практическая работа № 3 «Приготовление	
		раствора с заданной массовой долей растворенного	
		вещества»	
37	14	Контрольная работа № 3 по теме «Соединения	
		химических элементов»	
		Изменения, происходящие с веществами 11	часов
38	1	Физические явления. Разделение смесей	
39	2	Закон сохранения массы веществ. Химические	
		уравнения	
40	3	Составление уравнений химических реакций	
41	4	Расчеты по химическим уравнениям	
42	5	Реакции разложения. Понятие о скорости	
10	_	химической реакции и катализаторах	
43	6	Реакции соединения. Цепочки переходов	
44	7	Реакции замещения. Ряд активности металлов	
45	8	Реакции обмена. Правило Бертолле	
46	9	Типы химических реакций на примере свойств воды	
47	10	Обобщение и систематизация знаний по теме	
		«Классы неорганических веществ. Типы	
40	11	химических реакций»	
48	11	Контрольная работа № 4 по теме: «Изменения,	
	Т	происходящие с веществами»	Turan 16 ya an
49	1	Растворение. Растворы. Свойства растворов электро Растворение как физико-химический процесс.	TINTOR TOASCOR
49	1	Растворение как физико-химическии процесс. Растворимость	
50	2	Электролиты и неэлектролиты	
51	3	Основные положения теории ЭД	
52	4	Ионные уравнения	
53	5	Кислоты в свете электролитической диссоциации,	
33	3	их классификация, свойства	
54	6	Кислоты в свете ТЭД, их классификация, свойства	
JŦ	U	теполоты в овете 104, ил классификация, своиства	

55	7	Основания в свете ТЭД; их классификация,		
		свойства		
56	8	Основания в свете ТЭД; их классификация,		
		свойства		
57	9	Оксиды, их классификация, свойства		
58	10	Соли в свете ТЭД, их свойства		
59	11	Генетическая связь между классами неорганических		
		веществ		
60	12	Практическая работа № 4. Выполнение опытов,		
		демонстрирующих генетическую связь между		
		основными классами неорганических соединений		
61	13	Окислительно-восстановительные реакции		
62	14	Упражнения в составлении окислительно-		
		восстановительных реакций		
63	15	Свойства простых веществ – металлов и		
		неметаллов, кислот, солей в свете ОВР		
64	16	Свойства простых веществ – металлов и		
		неметаллов, кислот, солей в свете ОВР		
Ито	говое по	овторение, демонстрация личных достижений учащі	ихся 4часа	a
65	1	Обобщение и систематизация знаний по курсу 8		
		класса, решение расчетных задач		
66	2	Обобщение и систематизация знаний по курсу 8		
		класса, решение расчетных задач		
67–	3-4	Итоговая контрольная работа и ее анализ		
68				
69-	5-6	резерв		
70				